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Introduction

» What are the problems that need solutions from engineers, in todays
world??

» What does it take to train an engineer who can solve problems in todays
world??

» |Is the training being provided in the nation sufficient for engineers??

» What are the challenges?

» How can we improve??

» Training in computational mechanics requires improvement

»We look at analysis of failure in a directionally
solidified nickel-based superalloy
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Introduction

» Ni-based superalloys are materials with unique
properties — high temperatures

» Widely used as turbine-engine materials.
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Introduction

* Current requirements:- fuel economy, low CO,/NOx and low noise

* Essentials include high:-
*»Compressor exit pressures
**Turbine temperatures

* Materials design is a big challenge.
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Introduction

 Steels — historically
e Superalloys — Co-, Ni- and Fe-Ni-based

* Ni-based - extensively applied in hot sections
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Strain-controlled fatigue tests

» Two specimens machined from the same sample
»Subjected to fatigue loading, at high temperature
» Results show different number of cycles to failure in the specimens, WHY???

» Investigation, using computational mechanics / Fatigue life (cycles, N) \
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FE model generation - ABAQUS

»Two FE models were generated based on the methodology in the flow chart
»Due to curved geometries, mesh was tetrahedral elements

»These are C3D10 with full integration

» Non-uniform mesh size — due to variable grain size
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FE modelling - ABAQUS

» ABAQUS simulations with mechanical deformations — Crystal plasticity model
» Loading & boundary conditions based on experimental tests
» Results post processing: stress/strain loops & stabilised stress evolution to failure

»Hence we can use these results to elucidate Fatigue life difference  Stress distributions

Simulation vs test comparison
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Octahedral and cubic slip systems control plastic deformation.
For each slip system «, shear strain rate is given by:
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FE modelling - ABAQUS

»Need to investigate localised high stress in model (b)

» Grains with high stress are numberedi.e., 1-7

» Orientations for all grains in model (b) was considered

» Based on the orientations, Schmid factors for each grain were calculated

0.5
% 3 » Since shear is proportional to
5§ Schmid factor
@ o » The 7 grains yielded and failed
’ before the rest

> Hence, this led to the reduced

Grain ¢ D (°) ¢’:_! ©) Schmid factor fati gue
1 21.91 43.5 42.19 0.335184 5 Failure was caused b
2 38.63 41.27 40.85 0.324106 Y
3 136.32 35.07 71.91 0.446824 missorientations generated at
5 335.28 45.09 60.74 0.436073 5 Such defects are normall
O 6 61.26 33.58 73.57 0.441784 i : mally
N 7 268.81 19.08 86.71 0.308274 common in engineering
components
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Conclusions

> lllustration of capability of FEM as a tool for solving

existing and future (mechanics) engineering problems.

» Results were used to elucidate difference in LCF life
» Methodology can be applied to study other alloys
» Method is useful to solve other complex engineering

problems, including:
1) Sheet metal forming deep- and cup-drawing,
2) Extrusion and process/product design
3) Failure due to mechanical and diffusion interaction

Recommendations

* Since such tools are available for various
engineering disciplines, local engineers need to be
trained

» Investment in the state-of-the-art equipment and
modern engineering software, in research centres.

* Continuous curricula review, to train engineers to
innovatively solve local challenges in health, energy,
agriculture, transport, and others.
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